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Suppose ¢, 7 € V'. Then the bilinear form « on V defined by

a(u,w) = p(u)T(w) - p(w)7(u)

is alternating.

To show that « is alternating. we need to verify that a(u,u) =0 forallu e V.

a(u,u) = p(u)r(u) - e(u)7(u)
a(u,u) = p(u)r(u) —p(u)r(u) =0

Thus.
a(u,u)=0allforueV

Therefore. the bilinear form « is alternating.



A bilinear form « on V is alternating if and only if

a(u,w) = —a(w,u)

for all u,weV.

Proof First suppose that « is alternating. If u, w & V, then
O=a(u+ w,u—+ w)
= @foe, ) + (e, W)+ s, w) + o, w)

= &, WYy + &, u).

Thus a(u, w) = —a(w, 1), as desired.
To prove the implication in the other direction, suppose a (1, w) = —a(w, 1)
for all u,wo € V. Then a(v,v) = —a(v,v) for all v € V., which implies that

a(v,v) = 0 for all v € V. Thus « is alternating.



The sets Vs(yiz and Va(lf ) are subspaces of V(?). Furthermore,

v - y@ gy

sym alt

Proof The definition of symmetric bilinear form implies that the sum of any two
symmetric bilinear forms on V is a bilinear form on V, and any scalar multiple of
any bilinear form on V is a bilinear form on V. Thus V{,, is a subspace of V),
Similarly, the verification that V2 is a subspace of V® is straightforward.,

Next, we want to show that V@ = V3 + V‘('ﬁ). To do this, suppose g € V@),
Define p,a € V2 by

p(u,w) + p(w, u) pu,w) — p(w, u)

and &) =

p(u, w) =

2 2
Thenp e VG handa € VP, and B = p + . Thus V@ = VG, + V2.

Finally, to show that the intersection of the two subspaces under consideration
) . " 2
equals (0}, suppose B € Vin N V. Then (*) implies that
p(u,w) = —p(w,u) = —p(u, w)
for all 1, € V, which implies that $ = 0. Thus V® = VL @ V

by (**)

(2)

al» @s implied
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Suppose a, p € V). Define a function §: V* - F by Then e V*

5(111702,113,@4) = a(UI;UQ)P(U37U4)-

We need to show that 8 can be expressed as a sum of simpler terms. each involving only one input: to demonstrate its
linearity with respect to each input. This is done using the superposition property.

For input vy = (21, y1)¢ the superposition property states:

B(avy + b,ve,v3,v4) = aavy + b, va)p(vs,v4)

Expanding the expression using the definition of 3

= aavy + b,v2) - p(v3,v4)

Since vy = (21, y1 ). we can rewrite avy + b as a(x1,y1) + b(x1,y1) = (axy +b,ayy +b).

Applying the function « to this composite input:

= aaxy +b,ay; +b,x2,92) - p(v3,v4)

Now: we can use linearity of o with respect to each argument:

=a-a(r1,y1,22,92) +b-a(z1,y1,72,y2) - p(v3,4)

This simplifies to:

= aﬂ(’l}17v2,’U3,U4) + b/B(’Ul,U27'U3,U4)

This demonstrates linearity with respect to v;.

The rest is similar.



v i a subspace of V™),

alt

Proof that Va(lT) is a Subspace of V(™)

To prove that Va(lzn) is a subspace of V™ we need to show that Va(lzn) satisfies the following three criteria:

(a) The Zero m-Linear Form

The zero m-linear form 0 € Vd(lzn) since:

O(UU(l)a s 7va(m)) =0= Sgn(U) 'O(Uh s 7vm)'

Thus, 0 ¢ Vd(ltm)
Another way: The zero m-linear form «g defined by ag(v1,vs,...,v,) =0 for all vy, vy, ..., v, € V is clearly alternating
because it trivially satisfies ag(vy, ... Ujsen s Uk, .., U ) = 0 whenever v; = v, Thus, o € V;(IZ%)

(b) Closure under Addition

Let o, B € V;(IZ”) We need to show that a+ 3 ¢ V;(lzn):

(a+B)(Vo(1), -+ s Vo(my) =sgn(a) - (a+ B)(vi,...,vm).

Since both « and § are alternating, their sum « + 3 is also alternating. Thus, o+ 3 € Va(lzn)
Another way:

(a+ B)(v1,v2,. .y, 0m) = @(V1,v2, ..., V) + B(V1,02,...,0,) =0+0=0

. . . . . (m)
Hence, a + 8 is also an alternating m-linear form, implying that a+ 3 eV ™.

(c) Closure under Scalar Multiplication
Let av € Vd(lln) and ¢ be a scalar. We need to show that ca € Vd(ltm)
(ca)(Vo(1), - - Vo(m)) =sg0(0) - (ca) (vi,. .., Um).

For any scalar ¢, if « is alternating, then ca will also be alternating. Thus, ca € Vd(lzn)
Another way:

(ca)(vi,v9, ..., 0m) =c-a(vy,v,...,0p)=c-0=0

Hence, ca is also an alternating m-linear form, implying that ca e V™.



Suppose m is a positive integer and « is an alternating m-linear form on V. If vq,...,v,, is a linearly dependent
list in V, then

a(vy,...,um) =0

Proof Suppose v4,...,7,, is a linearly dependent list in V. By the linear depen-
dence lemma (*) , some vy is a linear combination of v4, ..., 7, _1. Thus there
exist by, ..., bp_4 such that v, = b0y + --- + by _10;_41. Now

k=1
A(Vgs s V) = [\'(1’1,...,Z’k_1, > b ,z’k+1,....zv,,,)
j=1

k=1
D by &(Vq,y s V15 Tps Vg 15 ++o5 Upyy)
j:
=1X
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il V 59y @ alternating m — linear form s + a2l 5o, dim V < (ayls p slaxs) m 4S5

e o JEs ol > dim V &S S 0151 v, ey v € V 5 23L V (g3, alternating m — linear form < XS o5
Sl Fas VI 51 o 0l S5 0 e @ (U150, U ) = 008 oy (o0 e 02l 4 o



G 5 AL Vs Wayls o 3l sd 01,0 3 VG alternating m — linear form SG a (srwb 34e SO moAS (55
.,\Sunﬂ:\.ﬂ -1 )):Sb h.i: b OLJ‘JJL& o (’01, ...,’Um))é J‘Jﬁjb;& oli.:b.- gf-’k’-‘ul}

.M)@x)‘o)k,&@jmm@)}waoli_,tq-,;)s Iy U1 + Vg G
a(vy + V9,01 + V2,03, ey Uy ) = 0
e aule B r:'fu‘ oslaiw! dsles %wéﬁmfkglj a o33 multilinear 3 o ¢S
a(V2,V1,03, ..y Uy ) = —(V1, V2, V3, vevy Upn)
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SIm K sae b il sae Va(;tn) Sl A U, e U SV SR 2 0303 Vs 2 (G100, Gm) € PErm(m) ‘..3)\:
a(vjw "'7vjm) = Sign(jh ~-ajm) a(vla "'avm)

e plraler (210b o e 1o il 4 cdSole ol ) ol (310 b o3l 5 s M B Y 51 2880l 1,y i oS ol 4 55 b
%b@@b—@bd&dx:\wjlm .M:damisjj:fléwpk;\)CM‘.QL?-JELJIJ&J%ﬁ)M:@ﬂ:}J “1,S6 L1, o)l
x2S i 335k 3l 4 815 sign(n, e m) = 1w 35 kS a5 5k 2l & @ plie ST . sign = 10155 6 s o 1,y
.Méda ‘)}E Sy 64’?’0687,9”(]1,,]7”) =-1



sl wils Slkel,..n aglp v,.,v, €V s dowa Vgl Wb (ae gozms SG €1, ., Oerer o= dim Vus (o5
«l V (535, alternating n - linear form &G« a s glp 8 315 0L 0l 5 0 v = Xy bjpej S JKS 0 by gy bpp € F
Oé(’Ul,...,’Un) = 04(61, "'7en) Z(jl,...,jn)eperm(n) (SZgn(leyjn)) bjl,lv--'ybjn,n

el 3L Vs, alternating n — linear form &G a)f\
. . 04(1}1,...,1)") = a(ZZ:l bjl,leju“"zyn:l bjmnejn) =
Zjlzl Zjnzl bj171"'bjn7n a(eju s ejn) = E(jl,.“,jn)eperm(n) bj171"'bjn7n O‘(eh LA ejn) =

01(61, ---aen) Z(jl,...,jn)sperm(n) (Sign(jlv 7jn)) bjl,lv mvbjn,n

X3 plane 1, g ST (g5 €, ) = 08l 3 s cpl 0 p g s0slae



el Ky oy VEETVD 15y gl sl

45.&.2@@43;?@ el,...,en,f\ a0 Lnn Vg, alternating n —linear form s> o sasn=dimV 4S8 53

23 e el ganzd 5L o gS1 . al(eq,...,en) = caler,...,en) S SéaceFsjlssescaler,....en) #0
Ared Vgl ol G amed )3 5 o> o el,...,encxf(..«.}b@ alternating n — linear form
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a/(vl, ...,1}”) = o/(el7 ,..,en) Z(jl,...,jn)eperm.(n) (.sign(j_j, ,]n)) bj1,17 ~-~7bjn,n
= Ca(el,...7€n) Z(jl,.“,j")eperm(n) (SZgn(.]h?jn)) bjlal""7bjn,77/
= ca(vy, ..., vp)

A o a8 G ot s cnd SO @, @ a2 53 0 = e dS Az e LS VU salslas s s @ i sanB 51 YL gl
Adim VY <1
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Oé(’l}h '-~7UTL) = Z(jl,“.,jn)epe’r‘m(n) (Sign(jh 7Jn)) ¢j1 (U1)7 "'7¢jn (’Un)
(71, ./..,jn) eperm(n) 2 Gy . v = vy LS upjf o 03 alternating S sl il 5680 (ool = l.in-ear‘ form S 044/5 o
(.::J::\fdﬁ w9 3sd o g adaly 00 @q-ﬁg;,i.ﬁ«.la-ﬁw\ﬁib v =2 &S 2l O3yl s cudle (G2, 71, 53, -0y dn) St
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Suppose that n is a positve integer. The map that takes a list vy, ..., v,, of vectors in F" to det(vy, ..., v, is an alternating
n-linear form of F".

Letey, ..., e5 be the standard basis of F™ and suppose vy, ..., v, is a list of vectors in F™. Let T € L(F™) be the operator such
that Te, = vy, for k = 1,...,n. Thus T is the operator whose matrix with respect to ey, ..., e, is (v;1...v,,). Hence det(v;...V,,) =
detT'« by definition of the determinant of a matrix.

Let « be alternating n-lineaar form on F” such that a(ey, ..., e, ) = 1. Then

det(vy...v,) =detT
= (detT)a(ey, ..., en)
a(Tey,...,Tey,)

= (V1 .y V),

where the third line follows from the definition of the determinant of an operator. The equation above shows that the map
that takes a list of vectors vy, ..., v, in F™ to det(v;...v,,) is the alternating n-linear form o on F".

\Y



Suppose that n is a positive integer and A is an n-by-n square matrix. Then

detA= Z (SZgn(Jlav.]n))A]hlAJnvn

(J1,--23n)eperm(n)

Theorem *: Let n = dim V. Suppose e, ..., e, is a basis of V and vy, ...,v, € V. Foreach ke {1,...,n}c let by g,..., by € F be
such that

n
v = ) bjke;
i

Then

a(vy, .., vn) = aler, ..., en) Z (sign(gi, ..y jn))bjy 105, n
(J1s--dn)eperm(n)

for every alternating n-linear form acon V.
Apply theorem * with V' = F™ and ey, ..., e, the standard basis of F" and « the alternating n-linear form on F™ that takes
V1, .oy Uy to det(vy...vy, ). If each vy, is the k" column of A« then each b; 1 in theorem * equals A; ;. Finally.

a(ey,....ep) =det(er,,,e,) =det I =1.

\Y



m Determinant of 2 * 2 matrix
m Determinant of 3 * 3 matrix

a C
det b alt
a c a c 1 0 1 0
Vi pr o ap-vels] o i) fo) (i
:aV((l),c(l)+d(1))+bV[] H dH
:acV([(l)],[(l)])+adV([(1)], ‘1) )+ch([1],[O])+bdv([1],[g])
:0+adV(|:é (1)])+ch([(1) (1)})+O:ad—ch([(1) ?]):ad—bc
a b ¢
det|d e f]:
L h Z]
a b ¢ al [o] [e 1 [0 0 1 0 0 1 0 0
Vld e fP=v({d|,lel,|f])=V(a|0|+d|[1]+g|O0O|,b]0]+e|l]+R|0O],c|O|+f]L|+3][0[)
A R R R R R R R R
11 [1 0 o] [1 0 0] 0 1 0 0 1 0 0
—aV(O,b0+el+h0,cO+f1+iO)+dV(1,bO+el+h0,cO+f1+i0)
of |o 0 1] ]o 0 1] 0 0 1 0 0 1
o] [1 0 o] [1 0 [0 1] [1] [1 1] [o
+gV(|0o],bl0|+e|1|+Rn|O],clOo]|+F]1 +20):ach(O,O,O)+abfV( o111
1] |o] [o] [t [o] |of |1 0f |o] [0 ol 1ol |o
(11 [1] [0 o] [o] [1] 0] [o] [o]
+abiV(] 0| | 0|« | O|( +...)allpossiblestates :X*¥*Y = (YV+ ghcV([0[. [0]. |0 (+gth(|:O O |1¢
0] |of [1 1] |1] [o] 1] |1] [o]
0] [o] [o] 1] [o o 1] [o 0 (0] [1] [o [0] [1] [0
+ ghiV([o ] |0 |o[(=aeiv([ O] [1] 0|+ athv o [0 [1]|C+bdiv| 1] [0] |0 |+ bfgV(|o] [0] |1
1|1 [1] of [of |1 of [1] [0 0] |of [1 1] [0] |oO
0 o] [1
+cdhV(]1 |:O] [](+cegV( |:1] |:Oj|( aei - ath - bdi + bfg + cdh - ceg
1 1] lo] o

VY



A square matrix A is ivertible if and only if det(A) # 0

Theorem *: Letn = dim V. Suppose « is a nonzero alternating n-linear form on V and e, ..., €, is alist of vectors in V. Then

aer,....;en) #0
ifand only if ey, ..., €, is linearly independent.
If A is invertible. then AA™! = I« so
1=det(I) = det(AA™) = det(A) det(A™)

therefore det(A) # 0.

Now suppose det(A) # 0. Suppose v € V and v # 0. Let v, ea, ..., e, be a basis of V and let a € V;;) be such that @ # 0. Then
a(v, e, ...,e,) # 0(theorem *). Now

a(Av, Aeg, ..., Aey) = (det(A))a(v, ea,...,en) #0

Thus Av # 0. Hence A is invertible.

V0



If one row or column is zero. then determinant is zero.

Aanl
The k'" row is completely zero

det(A) = 3

j=1

a12 -t QAln

a2 - A2p
0 0

Ap2 - Ann

. And we know that det(A4) = det(AT).

(—1)j+1akj det(Akj)

\§



If two rows or columns of matrix are same. then determinant is zero.

The columns or rows are linearly dependent. suppose that the k* column or the £ row = vy,

(V1,09 vy Vkgy vy U ) = (U1, V2, ooy CLUT + CoU + v + Co1 Vo1 + Clg1Vkt1 + oor + CpUny ooy Up ) = 0

as a result the det(A) is zero. because determinant is an alternating n-linear form of F™".

\V



If two rows or columns of matrix are interchanged. the sign of determinant is changes!

A = [v1v2...0k...Up...v, ] and we know that det(A) = det(v1va...Vk...0p...0) = @(V1V2... V... Vp... Uy ).
Then assume that we interchange vy, and v,. Now we build the new matrix
B = [v1vg...(vk + Vp)...(Vk + Up)... 0 |-
The determinant of B is zero. because it has two linearly independent column. We have

0=a(v1,...,; U + Vp, .0, U + Vp, ..., Up)

(V1 eey Upy vey Uhgy ovey U ) = = (V1 ooy Uk ey Upy oovy Up)

So the sign of determinant changed.

A



det(I)=1

1 0
In=? 1 ;
0 1

det(I,) = det(vy...vn) = a(vy..v,) = aey...en) =1 Note : e;

4



If a multiple of one row/column of A is added to another row/column to produce a matrix B. then det(A) = det(B).

A =[v1...0%...0p...v, ] and we know that det(A) = det(v1va...Vk...Vp...U, ) = (V1V2...V%...Vp...Vp)-
Now we build matrix Bc B = [v1...0k...(vp + Bk )...0n -
det(B) = a(v1...v...(vp + Bug)...v)

= a(v1..0...Up..0n) + @(V1...0k...00...0p)

= o(v1...0k...Up...U, ) + O(linearly dependency) = det(A)



If A is a triangular matrix. then det(A) is the product of the entries on the main diagonal of A.

We will proof for upper triangular. recursively and note that det(A) = det(AT).

a1 Gz - Glp
0 agg - a,
0 0 - an

Base case: Forn =1 it is trivial.

det(A) = |a11| =an
Inductive step: Assume for any (n —1) x (n — 1) upper triangular matrix. the statement is hold. We can write:
det(A) = Z(—l)iHaﬂ det(A\i\l)
i=1

We know that a;; = 0 for any i > 1. so det(A) = a;1 det(Ay1\;) and by Induction Hypothesis det(Ay;\1) = IT}. a4 So
det(A) = H?:la“- O

AR



If a column or row is multiplied to k then determinant is multiplied to k.

We will proof for multiplying a row: and for a column note that det(A) = det(AT).
Assume the [-th row of A is multiplied by & and yields A’.

det(A’) = Y (-1)"*ay; det(A{y ;)

J=1

We know that Ay, ; = Ay; and aj; = kay;. So

det(A") =k Y (-1)"7ay; det(Ayy,) = kdet(A)

J=1

Yy



If a row/column is a multiple of another row/column then determinant is zero.

We will proof for row. and for column note that det(A) = det(AT).

Consider an n x n matrix A with rows r1,79,-+-,7,. Suppose that row r; is a multiple of row r;c where 4 # j. That is. there
exists a scalar a such that:

Ty =Qar;

Let B be the matrix obtained by replacing row r; with the row 7; — ar;. Thus:
ri=ri—ar; =0

Therefore. the new matrix B has a zero row at the i-th position )a;, = 0 for any 0 < k < n.( Thus:

det(B) = Z (—1)i+kaik det(A\i\k) =0
k=1
We will show that det(A) = det(B). Since determinant is an alternating multilinear form:

det(B) =det(ry,...,mi—arj,...,Tj,...,T)
=det(ri,. ., iy, TgseeesTn)

—adet(ry,...,rj,..., "5, ..., )

The second term is zero because if swapping two identical rows negates the determinant. the determinant must be zero
because it equals its own negative. The first term is det(A). so det(A) = det(B) = 0.

Yy



If columns/rows of matrix are linearly dependent. then its determinant is zero.

We will proof for row. and for column note that det(A) = det(AT).

Let A with rows r1, ..., 7, be a matrix whose rows are linearly dependent. This means there exist scalars oy, . . ., ¢ notall
zero. such that:

a1ry + -+ oy, =0

Without loss of generality. we can assume 7, can be written as a linear combination of the other rows:

Tn = B1r1+ -+ Bpuo1Tn1

Where 8; = —a;/ay,. So the determinant of A is:

det(A) =det(r1,...,7n-1,01m1+ "+ Bn-1Tn-1)

By the multilinear property of the determinant we can write:
det(A) = frdet(ry,...,rp-1,71) + -+ Brordet(ry, .. o1, 7o)

By the alternating property. the determinant of a matrix with two identical rows is zero. So all terms above are equal to zero.
Hence we conclude that det(A) = 0.

Yy



Columns/rows of a matrix are linearly dependent if and only if its determinant is zero.

We will proof for row. and for column note that det(A) = det(AT).

We will show that the determinant of matrix A is proportional to the determinant of a triangular matrix B obtained from A
through row operations.

We already know that for any A we can obtain a triangular matrix B with row operations. Changes in determinant were
proved previously:

Swapping rows: This change negates the determinant.
Scaling rows: Multiplying a row by k£ multiplies the determinant by k.
Row addition: Adding a multiple of one row to another row does not change the determinant.

So det(A) = adet(B) where « # 0. Since for a matrix A with linearly independent rows. the main diagonal entities in B are

all nonzero. det(B) =117, b;; # 0 = det(A) # 0. In addition. if rows of A are linearly dependent: there exists an entity in the

main diagonal equals zero. so det(A) = det(B) = 0. So. we showed that rows of a matrix are linearly dependent if and only if
its determinant is zero.

Yo
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If A is an n x n matrix. then det(A”) = det(A)

Each element o € S, has a unique inverse 0! € S,, such that o(o; 1) = 07! (0;). We'll also need the property that
sgn(c) = sgn(o—1)(which is clear from writing o as a composition of interchanges and then realizing ¢~ is the same
compsition in reverse ). So. we have

det(A) = > sgn(o) Tn{ oy i

€S,

Z sgn(o) [] Ug(o-1(i),0-1 (7)) ( reordering the product )
i=1

oeSy,

Z sgn(o) H Qi o-1 (i)
=1

ogeS,

n
> sgn(o™") q Qi o-1(5)

geS,

n
Y. sgn(a’) [ ai o (writing o for o' and reordering the sum)
o’eSy, i=1

Yv



If A and B are n x n matrices. then det(AB) = det(A) det(B)

eorem *: Let n = dim V. Suppose e, ...,e, isabasisof V and vy, ...,v, € V. Foreach k€ {1,...,n}cletby ,....,bp 1 € e
Th *: L dim V. Supp is a basis of V and V. F hke{l Yelet by, bnreFDb
such that

n
v = ), bjke;
=

Then

a(vy, .., vn) = aler, ..., en) > (5ign(j1s s 3n))0jy1--bjy
(J1y---sJn )eperm(n)

for every alternating n-linear form avon V.
Apply theorem * with V' = F™ and ey, ..., e,, the standard basis of F" and « the alternating n-linear form on F™" that takes
V1, ..y Up to det(vy...0,). If each vy, is the k" column of A« then each b; i in theorem * equals A; ;.. Finally.

a(eq,....,en) =det(eq,,,e,) =det I = 1.
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Show that the determinant. det : M,,(F') — F'is not a linear transformation when n > 2

It’s not truec because det(A + B) + det(A) + det(B)
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