جبر خطی

دانشكده مهندسي كامپيوتر

حمیدرضا ربیعی، مریم رمضانی پاییز ۱۴۰۲

قضایای اسلاید ۱۵

Example

Suppose $\varphi, \tau \in V'$. Then the bilinear form α on V defined by

$$\alpha(u,\omega) = \varphi(u)\tau(\omega) - \varphi(\omega)\tau(u)$$

is alternating.

To show that α is alternating, we need to verify that $\alpha(u, u) = 0$ for all $u \in V$.

$$\alpha(u, u) = \varphi(u)\tau(u) - \varphi(u)\tau(u)$$

$$\alpha(u, u) = \varphi(u)\tau(u) - \varphi(u)\tau(u) = 0$$

Thus

$$\alpha(u,u)$$
 = 0 all for $u \in V$

Therefore, the bilinear form α is alternating.

A bilinear form α on V is alternating if and only if

$$\alpha(u,\omega) = -\alpha(\omega,u)$$

for all $u, \omega \in V$.

Proof First suppose that α is alternating. If $u, w \in V$, then

$$0 = \alpha(u + w, u + w)$$

$$= \alpha(u, u) + \alpha(u, w) + \alpha(w, u) + \alpha(w, w)$$

$$= \alpha(u, w) + \alpha(w, u).$$

Thus $\alpha(u, w) = -\alpha(w, u)$, as desired.

To prove the implication in the other direction, suppose $\alpha(u, w) = -\alpha(w, u)$ for all $u, w \in V$. Then $\alpha(v, v) = -\alpha(v, v)$ for all $v \in V$, which implies that $\alpha(v, v) = 0$ for all $v \in V$. Thus α is alternating.

The sets $V_{\text{sym}}^{(2)}$ and $V_{\text{alt}}^{(2)}$ are subspaces of $V^{(2)}$. Furthermore,

$$V^{(2)} = V_{\rm sym}^{(2)} \oplus V_{\rm alt}^{(2)}$$

The definition of symmetric bilinear form implies that the sum of any two symmetric bilinear forms on V is a bilinear form on V, and any scalar multiple of any bilinear form on V is a bilinear form on V. Thus $V_{\text{sym}}^{(2)}$ is a subspace of $V^{(2)}$. Similarly, the verification that $V_{\text{alt}}^{(2)}$ is a subspace of $V^{(2)}$ is straightforward. Next, we want to show that $V^{(2)} = V_{\text{sym}}^{(2)} + V_{\text{alt}}^{(2)}$. To do this, suppose $\beta \in V^{(2)}$.

Define $\rho, \alpha \in V^{(2)}$ by

$$\rho(u,w) = \frac{\beta(u,w) + \beta(w,u)}{2} \quad \text{and} \quad \alpha(u,w) = \frac{\beta(u,w) - \beta(w,u)}{2}.$$

Then $\rho \in V_{\mathrm{sym}}^{(2)}$ and $\alpha \in V_{\mathrm{alt}}^{(2)}$, and $\beta = \rho + \alpha$. Thus $V^{(2)} = V_{\mathrm{sym}}^{(2)} + V_{\mathrm{alt}}^{(2)}$. Finally, to show that the intersection of the two subspaces under consideration equals $\{0\}$, suppose $\beta \in V_{\mathrm{sym}}^{(2)} \cap V_{\mathrm{alt}}^{(2)}$. Then (*) implies that

$$\beta(u, w) = -\beta(w, u) = -\beta(u, w)$$

for all $u, w \in V$, which implies that $\beta = 0$. Thus $V^{(2)} = V_{\text{sym}}^{(2)} \oplus V_{\text{alt}}^{(2)}$, as implied by (**)

> (*) با استفاده از قضیه قبلی (**) قضيه Directsum

Example

Suppose $\alpha, \rho \in V^{(2)}$. Define a function $\beta: V^4 \to F$ by Then $\beta \in V^4$

$$\beta(v_1, v_2, v_3, v_4) = \alpha(v_1, v_2)\rho(v_3, v_4).$$

We need to show that β can be expressed as a sum of simpler terms, each involving only one input, to demonstrate its linearity with respect to each input. This is done using the superposition property.

For input $v_1 = (x_1, y_1)$, the superposition property states:

$$\beta(av_1 + b, v_2, v_3, v_4) = \alpha(av_1 + b, v_2)\rho(v_3, v_4)$$

Expanding the expression using the definition of β :

$$= \alpha(av_1 + b, v_2) \cdot \rho(v_3, v_4)$$

Since $v_1 = (x_1, y_1)$, we can rewrite $av_1 + b$ as $a(x_1, y_1) + b(x_1, y_1) = (ax_1 + b, ay_1 + b)$. Applying the function α to this composite input:

$$= \alpha(ax_1 + b, ay_1 + b, x_2, y_2) \cdot \rho(v_3, v_4)$$

Now, we can use linearity of α with respect to each argument:

$$= a \cdot \alpha(x_1, y_1, x_2, y_2) + b \cdot \alpha(x_1, y_1, x_2, y_2) \cdot \rho(v_3, v_4)$$

This simplifies to:

$$= a\beta(v_1, v_2, v_3, v_4) + b\beta(v_1, v_2, v_3, v_4)$$

This demonstrates linearity with respect to v_1 . The rest is similar.

 $V_{\text{alt}}^{(m)}$ is a subspace of $V^{(m)}$.

Proof that $V_{\text{alt}}^{(m)}$ is a Subspace of $V^{(m)}$

To prove that $V_{\text{alt}}^{(m)}$ is a subspace of $V^{(m)}$, we need to show that $V_{\text{alt}}^{(m)}$ satisfies the following three criteria:

(a) The Zero m-Linear Form

The zero *m*-linear form $0 \in V_{\text{alt}}^{(m)}$ since:

$$0(v_{\sigma(1)},\ldots,v_{\sigma(m)})=0=\operatorname{sgn}(\sigma)\cdot 0(v_1,\ldots,v_m).$$

Thus,
$$0 \in V_{alt}^{(m)}$$
.

 $\text{Thus, } 0 \in V_{\text{alt}}^{(m)}.$ Another way: The zero m-linear form α_0 defined by $\alpha_0(v_1, v_2, \dots, v_m) = 0$ for all $v_1, v_2, \dots, v_m \in V$ is clearly alternating because it trivially satisfies $\alpha_0(v_1, \dots, v_j, \dots, v_k, \dots, v_m) = 0$ whenever $v_j = v_k$. Thus, $\alpha_0 \in V_{\text{alt}}^{(m)}$.

(b) Closure under Addition

Let $\alpha, \beta \in V_{\text{olt}}^{(m)}$. We need to show that $\alpha + \beta \in V_{\text{olt}}^{(m)}$:

$$(\alpha + \beta)(v_{\sigma(1)}, \dots, v_{\sigma(m)}) = \operatorname{sgn}(\sigma) \cdot (\alpha + \beta)(v_1, \dots, v_m).$$

Since both α and β are alternating, their sum $\alpha+\beta$ is also alternating. Thus, $\alpha+\beta\in V_{\mathrm{alt}}^{(m)}$. Another way:

$$(\alpha + \beta)(v_1, v_2, \dots, v_m) = \alpha(v_1, v_2, \dots, v_m) + \beta(v_1, v_2, \dots, v_m) = 0 + 0 = 0$$

Hence, $\alpha + \beta$ is also an alternating *m*-linear form, implying that $\alpha + \beta \in V_{\text{alt}}^{(m)}$.

(c) Closure under Scalar Multiplication

Let $\alpha \in V_{\text{alt}}^{(m)}$ and c be a scalar. We need to show that $c\alpha \in V_{\text{alt}}^{(m)}$:

$$(c\alpha)(v_{\sigma(1)},\ldots,v_{\sigma(m)}) = \operatorname{sgn}(\sigma)\cdot(c\alpha)(v_1,\ldots,v_m).$$

For any scalar c, if α is alternating, then $c\alpha$ will also be alternating. Thus, $c\alpha \in V_{\text{alt}}^{(m)}$. Another way:

$$(c\alpha)(v_1, v_2, \dots, v_m) = c \cdot \alpha(v_1, v_2, \dots, v_m) = c \cdot 0 = 0$$

Hence, $c\alpha$ is also an alternating m-linear form, implying that $c\alpha \in V_{\text{alt}}^{(m)}$.

Suppose m is a positive integer and α is an alternating m-linear form on V. If v_1, \ldots, v_m is a linearly dependent list in V, then

$$\alpha(v_1,\ldots,v_m)=0$$

Proof Suppose $v_1,...,v_m$ is a linearly dependent list in V. By the linear dependence lemma (*), some v_k is a linear combination of $v_1,...,v_{k-1}$. Thus there exist $b_1,...,b_{k-1}$ such that $v_k=b_1v_1+\cdots+b_{k-1}v_{k-1}$. Now

$$\begin{split} \alpha(v_1,...,v_m) &= \alpha\Big(v_1,...,v_{k-1},\sum_{j=1}^{k-1}b_jv_j,v_{k+1},...,v_m\Big) \\ &= \sum_{j=1}^{k-1}b_j\,\alpha(v_1,...,v_{k-1},v_j,v_{k+1},...,v_m) \\ &= 0. \end{split}$$

(*) قضیه عنوان شده در اسلاید صفحهی ۱۸

. به روی V است. $dim\ V < dim\ V < i$ است. m است. فرض کنید m رتعداد بردارها)

نیست. $m>\dim V$ یک $m>\dim V$ وی m>0 باشد و m>0 باشد و

فرض کنید m یک عدد طیبیعی، α یک α اسند. در نتیجهی $v_1,...,v_m$ و $v_1,...,v_m$ لیستی از بردارها در $v_1,...,v_m$ باشند. در نتیجه عبیر می کنید $v_1,...,v_m$ مقدار $v_1,...,v_m$ مقدار $v_2,...,v_m$ مقدار $v_1,...,v_m$ مقدار $v_2,...,v_m$

. نخست
$$v_1 + v_2$$
 را در دو جایگاه نخست قرار می
دهیم و به عبارت زیر میرسیم.

$$\alpha(v_1 + v_2, v_1 + v_2, v_3, ..., v_m) = 0$$

اکنون از multilinear بودن lpha برای گسترش سمت چپ معادله استفاده می کنیم تا به عبارت زیر برسیم.

$$\alpha(v_2, v_1, v_3, ..., v_m) = -\alpha(v_1, v_2, v_3, ..., v_m)$$

به طور مشابه می توان این عمل را برای بردارهای جایگاههای دیگر نیز انجام داد و به نتیجهی یکسان رسید.

داریم m داریم $\alpha \in V_{alt}^{(m)}$ ، هر و $\alpha \in V_{alt}^{(m)}$ درون بردارهای از $\alpha \in V_{alt}^{(m)}$ ، لیست هر برای $\alpha \in V_{alt}^{(m)}$ هر و باشد طبیعی عدد یک $\alpha (v_{j_1},...,v_{j_m}) = sign(j_1,...,j_m)$ $\alpha (v_1,...,v_m)$

با توجه به این که $j_1,...,j_m$ جایگشتی از ۱ تا m هستند، می توانیم با تعدادی جابه جایی از این جایگشت، به جایگشت $j_1,...,j_m$ برسیم. هر بار این جابه جایی ها اندازه ی α را با فاکتور $j_1,...,j_m$ می دهد و در نتیجه مقدار باقی جایگشت را نیز با همین فاکتور تغییر می دهد. پس از تعداد مشخصی جابه جایگ به جایگشت $j_1,...,j_m$ می رسیم که در آن $j_1,...,j_m$ به تعداد بار زوج تغییر کرد یعنی $j_1,...,j_m$ و اگر به تعداد بار فرد تغییر کرد بعنی $j_1,...,j_m$ می رسیم که در آن $j_1,...,j_m$ اگر مقدار $j_1,...,j_m$ که نتیجه ی مورد نظر را می دهد.

فرض کنید $n=dim\ V$, n ... همچنین $n=dim\ V$ یک مجموعه ی پایه برای $v_1,...,v_n\in V$... همچنین $v_1,...,v_n$ یک مجموعه ی پایه برای $v_1,...,v_n\in V$... برای هر $v_1,...,v_n$... $v_1,...,v_n\in V$ است، $v_2,...,v_n\in V$ است، $v_3,...,v_n\in V$

اگر α یک α باشد، داریم α باشد، داریم اگر α باشد، داریم

$$\alpha(v_1,...,v_n) = \alpha(\sum_{j_1=1}^n b_{j_1,1}e_{j_1},...,\sum_{j_n=1}^n b_{j_n,n}e_{j_n}) = \sum_{j_1=1}^n ... \sum_{j_n=1}^n b_{j_1,1}...b_{j_n,n} \ \alpha(e_{j_1},...,e_{j_n}) = \sum_{(j_1,...,j_n) \in perm(n)} b_{j_1,1}...b_{j_n,n} \ \alpha(e_{j_1},...,e_{j_n}) = \alpha(e_1,...,e_n) \ \sum_{(j_1,...,j_n) \in perm(n)} \left(sign(j_1,...,j_n)\right) b_{j_1,1},...,b_{j_n,n}$$

معادلهی سوم به این دلیل برقرار است که
$$\alpha(e_{j_1},...,e_{j_n})=0$$
 متمایز نباشند.

فرض کنید $\alpha = \dim V$ و $\alpha = 0$ و ناسند که $\alpha = 0$ و خطی در $\alpha = 0$ و خطی در دارد $\alpha = 0$ و خطی در نتیجه یک پایه برای $\alpha = 0$ و خطی در نتیجه یک پایه برای $\alpha = 0$ و خطی در نتیجه یک پایه برای $\alpha = 0$ و خطی در نتیجه نتید و خطی در نتیجه نتیجه یک پایه برای و خطی در نتیجه نتیجه برای و خطی و خطی در نتیجه نتیجه برای و خطی و خ

$$\alpha'(v_1,...,v_n) = \alpha'(e_1,...,e_n) \sum_{(j_1,...,j_n) \in perm(n)} (sign(j_1,...,j_n)) b_{j_1,1},...,b_{j_n,n}$$

$$= c\alpha(e_1,...,e_n) \sum_{(j_1,...,j_n) \in perm(n)} (sign(j_1,...,j_n)) b_{j_1,1},...,b_{j_n,n}$$

$$= c\alpha(v_1,...,v_n)$$

برای پایان اثبات نیاز است نشان دهیم که یک $estimate{alternating n - linear form}$ ناصفر روی V وجود دارد و در نتیجه گزینهی بُعد صفر از میان میرود. به این منظور مجدد فرض میکنیم $estimate{alternating n - linear form}$ برای v و v و v را به عنوان میرود. به این منظور مجدد فرض میکنیم v یک پایه برای v و v و v و v را به عنوان دهیم. به بیان دیگر برای هر v و v داریم

$$v = \sum_{j=1}^n \phi_j(v) e_j$$

. را به این شکل تعریف میکنیم α ، $v_1,...,v_n \in V$ اکنون برای

$$\alpha(v_1,...,v_n) = \sum_{(j_1,...,j_n) \in perm(n)} (sign(j_1,...,j_n)) \phi_{j_1}(v_1),...,\phi_{j_n}(v_n)$$

 $(j_1,...,j_n) \in perm(n)$ است، مشهود می باشد. برای اثبات alternating بودن lpha فرض کنید $v_1=v_2$. برای هر n-linear form است، مشهود می باشد. برای اثبات $v_1=v_2$ تاثیر این دو جایگشت در جمع درون رابطه حنثی می شود و نتیجه می گیریم جایگشت $(j_2,j_1,j_3,...,j_n)$ علامت مخالف دارد. از آن جایی که $v_1=v_2$ تاثیر این دو جایگشت در جمع درون رابطه حنثی می شود و نتیجه می گیریم جایگشت $(v_1,...,v_n)=0$. این نشان می دهد که α یک $\alpha(v_1,v_1,v_3,...,v_n)=0$. این نشان می دهد که $\alpha(v_1,v_1,v_3,...,v_n)=0$ است.

در نهایت نیز به سادگی می توان نشان داد $0 = 1 \neq 0$ است. $\alpha(e_1,...,e_n) = 1 \neq 0$ است.

Suppose that n is a positive integer. The map that takes a list $v_1, ..., v_n$ of vectors in F^n to $det(v_1, ..., v_n)$ is an alternating n-linear form of F^n .

Let $e_1, ..., e_2$ be the standard basis of F^n and suppose $v_1, ..., v_n$ is a list of vectors in F^n . Let $T \in \mathcal{L}(F^n)$ be the operator such that $Te_k = v_k$ for k = 1, ..., n. Thus T is the operator whose matrix with respect to $e_1, ..., e_n$ is $(v_1...v_n)$. Hence $\det(v_1...V_n) = \det T$ by definition of the determinant of a matrix.

Let α be alternating n-linear form on F^n such that $\alpha(e_1,...,e_n)=1$. Then

$$\det(v_1...v_n) = \det T$$

$$= (\det T)\alpha(e_1, ..., e_n)$$

$$= \alpha(Te_1, ..., Te_n)$$

$$= \alpha(v_1, ..., v_n),$$

where the third line follows from the definition of the determinant of an operator. The equation above shows that the map that takes a list of vectors $v_1, ..., v_n$ in F^n to $\det(v_1...v_n)$ is the alternating n-linear form α on F^n .

Suppose that n is a positive integer and A is an n-by-n square matrix. Then

$$\det A = \sum_{(j_1,...,j_n) \in perm(n)} (sign(j_1,...,j_n)) A_{j_1,1}...A_{j_n,n}$$

Theorem *: Let $n = \dim V$. Suppose $e_1, ..., e_n$ is a basis of V and $v_1, ..., v_n \in V$. For each $k \in \{1, ..., n\}$, let $b_{1,k}, ..., b_{n,k} \in F$ be such that

$$v_k = \sum_{j=1}^n b_{j,k} e_j$$

Then

$$\alpha(v_1,...,v_n) = \alpha(e_1,...,e_n) \sum_{(j_1,...,j_n) \in perm(n)} (sign(j_1,...,j_n))b_{j_1,1}...b_{j_n,n}$$

for every alternating n-linear form α on V.

Apply theorem * with $V = F^n$ and $e_1, ..., e_n$ the standard basis of F^n and α the alternating n-linear form on F^n that takes $v_1, ..., v_n$ to $\det(v_1...v_n)$. If each v_k is the k^{th} column of A, then each $b_{j,k}$ in theorem * equals $A_{j,k}$. Finally,

$$\alpha(e_1,...,e_n) = \det(e_1,...,e_n) = \det I = 1.$$

Example

- Determinant of 2 * 2 matrix
- Determinant of 3 * 3 matrix

A square matrix A is ivertible if and only if $det(A) \neq 0$

Theorem *: Let $n = \dim V$. Suppose α is a nonzero alternating n-linear form on V and $e_1, ..., e_n$ is a list of vectors in V. Then

$$\alpha(e_1,...,e_n) \neq 0$$

if and only if $e_1, ..., e_n$ is linearly independent. If A is invertible, then $AA^{-1} = I$, so

$$1 = \det(I) = \det(AA^{-1}) = \det(A)\det(A^{-1})$$

therefore $det(A) \neq 0$.

Now suppose $\det(A) \neq 0$. Suppose $v \in V$ and $v \neq 0$. Let $v, e_2, ..., e_n$ be a basis of V and let $\alpha \in V_{alt}^{(n)}$ be such that $\alpha \neq 0$. Then $\alpha(v, e_2, ..., e_n) \neq 0$ (theorem *). Now

$$\alpha(Av, Ae_2, ..., Ae_n) = (\det(A))\alpha(v, e_2, ..., e_n) \neq 0$$

Thus $Av \neq 0$. Hence A is invertible.

If one row or column is zero, then determinant is zero.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

The k^{th} row is completely zero. And we know that $\det(A) = \det(A^T)$.

$$\det(A) = \sum_{j=1}^{n} (-1)^{j+1} a_{kj} \det(A_{kj})$$

If two rows or columns of matrix are same, then determinant is zero.

The columns or rows are linearly dependent, suppose that the k^{th} column or the k^{th} row = v_k .

$$\alpha(v_1,v_2,...,v_k,...,v_n) = \alpha(v_1,v_2,...,c_1v_1 + c_2v_2 + ... + c_{k-1}v_{k-1} + c_{k+1}v_{k+1} + ... + c_nv_n,...,v_n) = 0$$
 as a result the $\det(A)$ is zero, because determinant is an alternating n -linear form of F^n .

If two rows or columns of matrix are interchanged, the sign of determinant is changes!

$$A = \begin{bmatrix} v_1v_2...v_k...v_p...v_n \end{bmatrix} \text{ and we know that } \det(A) = \det(v_1v_2...v_k...v_p...v_n) = \alpha(v_1v_2...v_k...v_p...v_n).$$
 Then assume that we interchange v_k and v_p . Now we build the new matrix
$$B = \begin{bmatrix} v_1v_2...(v_k + v_p)...(v_k + v_p)...v_n \end{bmatrix}.$$
 The determinant of B is zero, because it has two linearly independent column. We have

$$0 = \alpha(v_1, ..., v_k + v_p, ..., v_k + v_p, ..., v_n)$$

$$\alpha(v_1, ..., v_p, ..., v_k, ..., v_n) = -\alpha(v_1, ..., v_k, ..., v_p, ..., v_n)$$
 So the sign of determinant changed.

 $\det(I) = 1$

$$I_n = \begin{bmatrix} 1 & \cdots & \cdots & 0 \\ 0 & 1 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 1 \end{bmatrix}$$
$$\det(I_n) = \det(v_1...v_n) = \alpha(v_1...v_n) = \alpha(e_1...e_n) = 1 \text{ Note } : e_i$$

If a multiple of one row/column of A is added to another row/column to produce a matrix B, then $\det(A) = \det(B)$.

$$A = \begin{bmatrix} v_1...v_k...v_p...v_n \end{bmatrix} \text{ and we know that } \det(A) = \det(v_1v_2...v_k...v_p...v_n) = \alpha(v_1v_2...v_k...v_p...v_n).$$
 Now we build matrix $B \cdot B = \begin{bmatrix} v_1...v_k...(v_p + \beta v_k)...v_n \end{bmatrix}.$

$$\det(B) = \alpha(v_1...v_k...(v_p + \beta v_k)...v_n)$$

$$= \alpha(v_1...v_k...v_p...v_n) + \alpha(v_1...v_k...\beta v_k...v_n)$$

$$= \alpha(v_1...v_k...v_p...v_n) + 0(\text{linearly dependency}) = \det(A)$$

If A is a triangular matrix, then det(A) is the product of the entries on the main diagonal of A.

We will proof for upper triangular recursively and note that $det(A) = det(A^T)$.

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

Base case: For n = 1 it is trivial.

$$\det(A) = |a_{11}| = a_{11}$$

Inductive step: Assume for any $(n-1) \times (n-1)$ upper triangular matrix, the statement is hold. We can write:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+1} a_{i1} \det(A_{\setminus i \setminus 1})$$

We know that a_{i1} = 0 for any i > 1, so $\det(A) = a_{11} \det(A_{\backslash 1 \backslash 1})$ and by Induction Hypothesis $\det(A_{\backslash 1 \backslash 1}) = \prod_{i=2}^n a_{ii}$. So $\det(A) = \prod_{i=1}^n a_{ii} \square$

If a column or row is multiplied to k then determinant is multiplied to k.

We will proof for multiplying a row and for a column note that $\det(A) = \det(A^T)$. Assume the l-th row of A is multiplied by k and yields A'.

$$\det(A') = \sum_{j=1}^{n} (-1)^{l+j} a'_{lj} \det(A'_{\backslash l \backslash j})$$

We know that $A'_{\lfloor l \rfloor j} = A_{\lfloor l \rfloor j}$ and $a'_{lj} = k a_{lj}$. So

$$\det(A') = k \sum_{j=1}^{n} (-1)^{l+j} a_{lj} \det(A_{\backslash l \backslash j}) = k \det(A)$$

If a row/column is a multiple of another row/column then determinant is zero.

We will proof for row, and for column note that $det(A) = det(A^T)$.

Consider an $n \times n$ matrix A with rows r_1, r_2, \dots, r_n . Suppose that row r_i is a multiple of row r_j , where $i \neq j$. That is, there exists a scalar α such that:

$$r_i = \alpha r_j$$

.

Let B be the matrix obtained by replacing row r_i with the row $r_i - \alpha r_j$. Thus:

$$r_i' = r_i - \alpha r_j = 0$$

Therefore, the new matrix B has a zero row at the i-th position) $a_{ik} = 0$ for any $0 \le k \le n$. (Thus:

$$\det(B) = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det(A_{i \setminus k}) = 0$$

We will show that det(A) = det(B). Since determinant is an alternating multilinear form:

$$\det(B) = \det(r_1, \dots, r_i - \alpha r_j, \dots, r_j, \dots, r_n)$$

$$= \det(r_1, \dots, r_i, \dots, r_j, \dots, r_n)$$

$$- \alpha \det(r_1, \dots, r_i, \dots, r_i, \dots, r_n)$$

The second term is zero because if swapping two identical rows negates the determinant, the determinant must be zero because it equals its own negative. The first term is $\det(A)$, so $\det(A) = \det(B) = 0$.

If columns/rows of matrix are linearly dependent, then its determinant is zero.

We will proof for row and for column note that $det(A) = det(A^T)$.

Let A with rows r_1, \ldots, r_n be a matrix whose rows are linearly dependent. This means there exist scalars $\alpha_1, \ldots, \alpha_n$ not all zero such that:

$$\alpha_1 r_1 + \dots + \alpha_n r_n = 0$$

Without loss of generality, we can assume r_n can be written as a linear combination of the other rows:

$$r_n = \beta_1 r_1 + \dots + \beta_{n-1} r_{n-1}$$

Where $\beta_i = -\alpha_i/\alpha_n$. So the determinant of A is:

$$\det(A) = \det(r_1, \dots, r_{n-1}, \beta_1 r_1 + \dots + \beta_{n-1} r_{n-1})$$

By the multilinear property of the determinant we can write:

$$\det(A) = \beta_1 \det(r_1, \dots, r_{n-1}, r_1) + \dots + \beta_{n-1} \det(r_1, \dots, r_{n-1}, r_{n-1})$$

By the alternating property, the determinant of a matrix with two identical rows is zero. So all terms above are equal to zero. Hence we conclude that $\det(A) = 0$.

Columns/rows of a matrix are linearly dependent if and only if its determinant is zero.

We will proof for row, and for column note that $det(A) = det(A^T)$.

We will show that the determinant of matrix A is proportional to the determinant of a triangular matrix B obtained from A through row operations.

We already know that for any A we can obtain a triangular matrix B with row operations. Changes in determinant were proved previously:

Swapping rows: This change negates the determinant.

Scaling rows: Multiplying a row by k multiplies the determinant by k.

Row addition: Adding a multiple of one row to another row does not change the determinant.

So $\det(A) = \alpha \det(B)$ where $\alpha \neq 0$. Since for a matrix A with linearly independent rows, the main diagonal entities in B are all nonzero, $\det(B) = \prod_{i=1}^n b_{ii} \neq 0 \Rightarrow \det(A) \neq 0$. In addition, if rows of A are linearly dependent, there exists an entity in the main diagonal equals zero, so $\det(A) = \det(B) = 0$. So, we showed that rows of a matrix are linearly dependent if and only if its determinant is zero.

Example

Compute
$$det(A)$$
, where $A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$

$$\begin{vmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 2 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & -4 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & -5 \end{vmatrix} = - 3 \begin{vmatrix} 1 & -4 & 2 \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & -5 \end{vmatrix} = - \begin{vmatrix} 1 & 0 & \frac{14}{3} \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & -5 \end{vmatrix} = 15 \begin{vmatrix} 1 & 0 & \frac{14}{3} \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 1 \end{vmatrix} = 15 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 15$$

If A is an $n \times n$ matrix, then $\det(A^T) = \det(A)$

Each element $\sigma \in S_n$ has a unique inverse $\sigma^{-1} \in S_n$ such that $\sigma(\sigma_i^{-1}) = \sigma^{-1}(\sigma_i)$. We'll also need the property that $sgn(\sigma) = sgn(\sigma-1)$ (which is clear from writing σ as a composition of interchanges and then realizing σ^{-1} is the same compsition in reverse). So we have

$$\begin{split} \det(A) &= \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n a_{\sigma_i,i} \\ &= \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n a_{\sigma(\sigma^{-1}(i),\sigma^{-1}(i))} (\text{ reordering the product }) \\ &= \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n a_{i,\sigma^{-1}(i)} \\ &= \sum_{\sigma \in S_n} sgn(\sigma^{-1}) \prod_{i=1}^n a_{i,\sigma^{-1}(i)} \\ &= \sum_{\sigma' \in S_n} sgn(\sigma') \prod_{i=1}^n a_{i,\sigma'_i} (\text{writing } \sigma' \text{ for } \sigma^{-1} \text{ and reordering the sum}) \end{split}$$

If A and B are $n \times n$ matrices, then $\det(AB) = \det(A) \det(B)$

Theorem *: Let $n = \dim V$. Suppose $e_1, ..., e_n$ is a basis of V and $v_1, ..., v_n \in V$. For each $k \in \{1, ..., n\}$, let $b_{1,k}, ..., b_{n,k} \in F$ be such that

$$v_k = \sum_{j=1}^n b_{j,k} e_j$$

Then

$$\alpha(v_1,...,v_n) = \alpha(e_1,...,e_n) \sum_{(j_1,...,j_n) \in perm(n)} (sign(j_1,...,j_n))b_{j_1,1}...b_{j_n,n}$$

for every alternating n-linear form α on V.

Apply theorem * with $V = F^n$ and $e_1, ..., e_n$ the standard basis of F^n and α the alternating n-linear form on F^n that takes $v_1, ..., v_n$ to $\det(v_1...v_n)$. If each v_k is the k^{th} column of A, then each $b_{j,k}$ in theorem * equals $A_{j,k}$. Finally,

$$\alpha(e_1,...,e_n) = \det(e_1,..,e_n) = \det I = 1.$$

Example

Show that the determinant $\det: \mathcal{M}_n(F) \to F$ is not a linear transformation when $n \geq 2$

It's not true: because $\det(A+B) \neq \det(A) + \det(B)$